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ABSTRACT
Flood extent mapping plays a crucial role in disaster manage-

ment and national water forecasting. Unfortunately, traditional

classification methods are often hampered by the existence of noise,

obstacles and heterogeneity in spectral features as well as implicit

anisotropic spatial dependency across class labels. In this paper, we

propose geographical hidden Markov tree, a probabilistic graphical

model that generalizes the common hidden Markov model from a

one dimensional sequence to a two dimensional map. Partial order

class dependency is incorporated in the hidden class layer with a re-

verse tree structure. We also investigate computational algorithms

for reverse tree construction, model parameter learning and class

inference. Extensive evaluations on both synthetic and real world

datasets show that proposed model outperforms multiple baselines

in flood mapping, and our algorithms are scalable on large data

sizes.
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1 INTRODUCTION
Flood extent mapping plays a crucial role in addressing grand

societal challenges such as disaster management, national water

forecasting, as well as energy and food security. For example, during

Hurricane Harvey floods in 2017, first responders needed to know

where flood water was in order to plan rescue efforts. In national

water forecasting, detailed flood extentmaps can be used to calibrate
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and validate the NOAA National Water Model [15], which can

forecast the flow of over 2.7 million rivers and streams through the

entire continental U.S. [4].

In current practice, flood extent maps are mostly generated by

flood forecasting models, whose accuracy is often unsatisfactory

in high spatial details [4]. Other ways to generate flood maps in-

volve sending a field crew on the ground to record high-water

marks, or visually interpreting earth observation imagery [2]. How-

ever, the process is both expensive and time consuming. With the

large amount of high-resolution earth imagery being collected from

satellites (e.g., DigitalGlobe, Planet Labs), aerial planes (e.g., NOAA

National Geodetic Survey), and unmanned aerial vehicles, the cost

of manually labeling flood extent becomes prohibitive.

The focus of this paper is to develop a classification model that

can automatically classify earth observation imagery pixels into

flood extent maps. The results can be used by first responders to

plan rescue efforts, by hydrologists to calibrate and validate water

forecasting models, as well as by insurance companies to process

claims. Specifically, we can utilize a small set of manually collected

ground truth (flood and dry locations) in one earth imagery to learn

a classification model. Then the model can be used to classify flood

pixels in other imagery where ground truth is not available.

However, flood mapping poses several unique challenges that

are not well addressed in traditional classification problems. First,

data contains rich noise and obstacles. For example, high-resolution

earth imagery often has noise, clouds and shadows. The spectral fea-

tures of image pixels are insufficient to distinguish classes. Second,

class confusion exists due to heterogeneous features. For instance,

pixels of tree canopies overlaying floodwater have the same spectral

features with those trees in dry areas, yet their classes are different.

Third, implicit directed spatial dependency exists between flood

pixel locations. Specifically, due to gravity, flood water tends to flow

to nearby lower locations following topography. Such dependency

is not uniform in all directions (anisotropic). Finally, the data vol-

ume is huge in high-resolution imagery (e.g., hundreds of millions

of pixels in one city), requiring scalable algorithms.

To address these challenges, we propose a novel spatial classi-

fication model called geographical hidden Markov tree (HMT). It is
a probablistic graphical model that generalizes the common hid-

den Markov model (HMM) from a one-dimensional sequence to a

two dimensional geographical map. Specifically, the hidden class

layer contains nodes (pixels) in a reverse tree structure to repre-

sent anisotropic spatial dependency with a partial order constraint.

Each hidden class node has an associated observed feature node for

the same pixel. Such a unique model structure can potentially re-

duce classification errors due to noise, obstacles, and heterogeneity

among spectral features of individual pixels.

We further investigate computational algorithms for reverse

tree construction, model parameter learning, and class inference.
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Specifically, reverse tree is constructed following topological orders

based on elevations. In order to learn model parameters given

a hidden class layer, we utilize the EM algorithm with message

propagation along the reverse tree. Finally, for class inference, we

design a greedy algorithm that assign class labels for tree nodes to

maximize overall probability following the partial order constraint.

In summary, we make the following contributions:

� We propose a novel geographical hidden Markov tree (HMT)

model that incorporates partial order class dependency in a

reverse tree structure in a hidden class layer. Unlike existing

hidden Markov trees [5] which model dependency in two-

dimensional time-frequency domain for signal processing,

our geographical HMT captures anisotropic (directed) spatial

dependency with a partial order constraint.

� We design efficient algorithms for reverse tree construction,

model parameter learning and class inference.

� We conduct theoretical analysis on the correctness and time

complexity of HMT algorithms.

� We evaluate proposed model in both synthetic and real

world datasets for flood mapping. Results show that pro-

posed model outperforms multiple baseline methods in flood

mapping, and our algorithms are scalable for large data sizes.

2 PROBLEM STATEMENT
2.1 Preliminaries

Definition 2.1. A spatial raster framework is a tessellation of a

two dimensional plane into a regular grid of N cells. Spatial neigh-

borhood relationship exists between cells based on cell adjacency.

The framework can consist of m non-spatial explanatory feature

layers (e.g., spectral bands in earth imagery), one spatial contextual

layer (e.g., elevation), and one class layer (e.g., flood, dry).

Definition 2.2. Each cell in a raster framework is a spatial data
sample, noted as sn = „xn ;ϕn ;yn ”, where n 2 N; 1 � n � N ,

xn 2 Rm�1
is a vector ofm non-spatial explanatory feature values

with each element corresponding to one feature layer, ϕn 2 R is

a cell’s value in the spatial contextual layer, and yn 2 f0; 1g is a

binary class label.

A raster framework with all samples is noted as F = fsn jn 2
N; 1 � n � N g, non-spatial explanatory features of all samples are

noted as X = »x1; :::; xN …
T
, the spatial contextual layer is noted as

Φ = »ϕ1; :::;ϕN …
T
, and the class layer is noted as Y = »y1; :::;yN …

T
.

Definition 2.3. Due to physics, spatial dependency exists between
cells based on their values in the spatial contextual layer. Such de-

pendency is often non-uniform in different directions (anisotropic).
For example, due to gravity, flood water can only flow to neighbor-

ing cells with lower elevation values.

Definition 2.4. Anisotropic dependency often follows a partial
order constraint. Formally, assuming the spatial contextual layer is a

potential field (e.g., elevation), a partial order dependency si { sj
exists if and only if there exist a sequence of neighboring (adjacent)

cells < si ; sp1
; sp2

; :::; spl ; sj > such that ϕ j � ϕi and ϕ j � ϕpk for

any 1 � k � l .

Figure 1(a) shows an illustrative example with eight spatially

adjacent cell samples in one dimensional space. Due to gravity,
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Figure 1: Illustration of partial order class dependency

if cell s5 is flood, its nearby cells with lower elevations including

s2; s3; s4; s6; s7 should also be flood, even if their feature values

indicate otherwise. Thus, we can establish partial order spatial

dependency between cell locations such as s4 { s5, s2 { s5.

Definition 2.5. Partial order dependency across all pairs of sam-

ples in a raster framework can be represented by a reverse tree

structure, which is called spatial dependency (reverse) tree or depen-
dency tree. We sometimes omit the word “reverse" for simplicity. The

tree structure removed some redundant dependency between cell

locations. Due to the reverse nature, a tree node n can have at most

one child Cn 2 N, but multiple parents Pn = fk 2 Njsk ! sn g

and multiple siblings Sn = fk 2 Nj∃ c 2 N s :t : sk ! sc ; sn ! sc g,

where! represents a tree edge from a parent to a child.

Figure 1(b) shows an example of dependency tree corresponding

to samples in Figure 1(a). Class dependency s3 { s2 is redundant
given dependency s3 ! s4 and s4 ! s2. It is worth noting that we

assume an arbitrary order when comparing nodes with the same

elevation values. For instance, if node s1 and node s8 had the same

elevation, the top of the tree could be either s5 ! s1 ! s8 or

s5 ! s8 ! s1.

2.2 Formal problem definition
We now formally define the problem.

Input:
� Spatial raster framework F = fsn jn 2 N; 1 � n � N g
� Explanatory features of samples X = »x1; :::; xN …

T

� Spatial contextual layer (elevation) of samples: Φ = »ϕ1; :::;ϕN …
T

� Training samples fsk jk 2 traininд setg
Output: A spatial classification model f : Y = f „X”
Objective: minimize classification errors

Constraint:
� Explanatory feature layers contain noise and obstacles

� Partial order dependency exists between sample classes based on

spatial contextual layer

� Sample class is binary, yn 2 f0; 1g

3 PROPOSED APPROACH
In this section, we start with overview of our hidden Markov tree

model and its probabilistic formulation. We then introduce specific

algorithms for dependency tree construction, model parameter

learning and class inference.
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3.1 Overview of Hidden Markov Tree
We propose a hidden Markov tree (HMT) model, which gener-

alizes the common hidden Markov model from a total order chain
structure to a partial order (reverse) tree structure. As illustrated
in Figure 2, a HMT model consists of two layers: a hidden layer of
sample classes (e.g., �ood, dry), and an observation layer of sample
feature vectors (e.g., spectral vectors). Each node corresponds to a
spatial data sample (raster cell). Edge directions show probabilistic
conditional dependence structure. Speci�cally, the model assumes
that feature vectors of di�erent samples are conditionally indepen-
dent with each other given their classes, and sample classes follow
a partial order dependency in a reverse tree structure.

Figure 2: Illustration of hidden Markov tree framework

Hidden Markov tree is a probabilistic graphic model. The joint
distribution of all samples' features and classes can be expressed as
Equation 1, wherePn is the set of parent samples of thenth sample
in the dependency tree, andyk 2Pn � f yk jk 2 Pn g is the set of
class nodes corresponding to parents of thenth sample. For a leaf
noden, Pn = ; , andP¹yn jyk 2Pn º = P¹yn º.

P¹X;Yº = P¹XjYºP¹Yº =
NÖ

n=1

P¹xn jyn º
NÖ

n=1

P¹yn jyk 2Pn º (1)

The conditional probability of sample feature vector given its
class can be assumed i.i.d. Gaussian for simplicity, as shown in
Equation 2, where� yn

and� yn are the mean and covariance matrix
of feature vectorxn for classyn (yn = 0; 1). It is worth noting that
P¹xn jyn º could be more general than i.i.d. Gaussian.

P¹xn jyn º � N¹ � yn
; � yn º (2)

Class transitional probability follows the partial order constraint.
For example, due to gravity, if any parent's class isdry, the child's
class must bedry; if all parents' classes are�ood, then the child
has a high probability of being�ood. Consider�ood as the positive
class (class value1) anddry as the negative class (class value0),
the transitional probability is actually conditioned on the product
of parent classesyPn �

Î
k 2Pn yk . The formula is in Equation 3,

where� is the probability of a child in class1 given all parents in
class1 (note that we assume00 � 1). In other words, if any parent
is in class0 (yPn = 0), the current node must also be in class0
(yn = 0); if all parents are in class1 (yPn = 1), then the current
node has a probability of� being in class1.

P¹yn jyPn º = 1¹1� yn º¹1� yPn º� 0yn ¹1� yPn º� � yn yPn �¹ 1� � º¹1� yn ºyPn

(3)
For a leaf noden, Pn = ; . The transitional probability is degraded

into simple class probabilityP¹yn jyk 2Pn º � P¹yn º = � yn � ¹ 1 �
� º1� yn , where� is the probability ofyn being in class1.

Though we introduce our HMT in the context of �ood mapping,
the model can potentially be used for a broad class of classi�cation
problems in which class labels follow a partial order dependency.
Examples include predicting pollutants in river stream networks
and tra�c congestion in road networks.

3.2 Dependency Tree Construction
Given geopotential �eld values (e.g., elevation) of all cells in

a raster framework, the goal is to produce a partial order class
dependency tree, in which each tree node corresponds to the class
label of a cell. The process is computationally challenging due to
the large number of cells (tree nodes) in real world high-resolution
earth imagery (e.g., hundreds of millions of pixels).

Algorithm 1 Spatial Dependency Tree Construction

Input:
� A raster framework of samples:F = f sn jn 2 N;1 � n � Ng
� A spatial contextual layer of samples:� = »� 1; :::;� N ¼T

Output:
� A spatial dependency tree

1: Initialize all samples asunvisited
2: Sort all samples by increasing� values
3: for each samplesn in an ascending order of� do
4: Mark sn asvisited
5: Create a new tree node ofsn
6: if there existsvisitedneighbor ofsn then
7: for each visitedneighborsk of sn do
8: Traverse from nodesk to the rear of its tree branch
9: Attach nodesn to the rear if have not done so

10: else
11: Create a tree branch starting from nodesn as a leaf
12: return the root node of dependency tree

To address the challenge, we propose an algorithm that con-
structs the tree by adding nodes in topological order. Details are
in Algorithm 1. The algorithm starts with an empty tree and an
empty set ofvisitedcells (all cells areunvisited, step 1). It sorts all
cells by their geopotential �eld (elevation) values (step 2). After
this, unvisitedcells are added into the tree (i.e., become visited) one
by one. Speci�cally, for each cell following an ascending order of
geopotential, the algorithm �rst marks it asvisited(step 4), creates
a tree node for the cell (step 5), and attaches the tree node to the
rear of every tree branch that passes through avisitedneighbor of
the cell (steps 6 to 9). If no neighbor of the cell isvisited, the cell is
a local minimum in geopotential �eld, and the algorithm creates a
new tree branch starting from the node of the cell (steps 10 to 11).

We now use the example of Figure 1 to illustrate the algorithm
execution trace. The example contains cells in one dimensional
space, but generalization to the case of two dimensional space is
trivial. The input contains eight cells froms1 to s8. The algorithm
�rst sorts these cells by an ascending order of elevation, and gets a
sequence ofs3; s6; s4; s7; s2; s5; s1; s8. Then, leaf nodes are created
for s3 ands6 respectively, since none of their neighbors have been
visited by then. Next, when addings4, its neighbors3 is visited,
so the algorithm attaches nodes4 to the rear of the branch that
passes throughs3. Similarly, nodes7 ands2 are attached to the two
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(a) From leaves to root (b) From root to leaves

Figure 3: Illustration of message propagation in a HMT

existing branches respectively. When adding the node fors5, both
of its neighbors arevisited, sos5 is attached to the rear of both
branches. After this, nodess1 ands8 are added consecutively.

Time complexity analysis: Algorithm 1 involves a one-time sort-
ing of N cells, which isO¹N logNº. Then, for each of theN cells,
the main operation is to attach the cell to the rear of the branches
of its visited neighbors. A naive implementation will costO¹Nº,
making the total costO¹N2º. A smarter way to do this is to maintain
a rear node pointer for each branch when it is created (i.e., when
a leaf node is added). Assuming that geopotential �eld values on
neighboring cells are contiguous (this is often true since real world
elevation of nearby locations do not change suddenly), �nding the
rear of a neighboring cell's branch is within a constant cost, making
the total time costO¹N logN + Nº = O¹N logNº (cost after sorting
is linear).

3.3 Model Parameter Learning
The parameters of hidden Markov tree include the mean and co-

variance matrix of sample features in each class, prior probability of
leaf node classes, and class transition probability for non-leaf nodes.
We denote the entire set of parameters as� = f � ; � ; � c; � c jc =
0;1g. Learning the set of parameters poses two major challenges:
�rst, there exist unknown hidden class variablesY = »y1; :::;yN ¼T ,
which are non-i.i.d.; second, the number of samples (nodes) is huge
(up to hundreds of millions of pixels).

To address these challenges, we propose to use the expectation-
maximization (EM) algorithm and message (belief) propagation.
Our EM-based approach has the following major steps:

(a) Initialize parameter set� 0
(b) Compute posterior distribution of hidden classes:

P¹YjX; � 0º
(c) Compute posterior expectation of log likelihood:

LL¹� º = EYjX;� 0 logP¹X;Yj� º
(d) Update parameters:

� 0  arg max� LL¹� º
Return� 0 if it's converged, otherwise goto (b)

Among the four steps above, step (b) that computes the joint
posterior distribution of all sample classes is practicallly infeasible
due to the large number of hidden class nodes that are non-i.i.d.
Fortunately, it is not necessary to compute the entire joint poste-
rior distribution of all sample classesP¹YjX; � 0º. In fact, we only
need the marginal posterior distribution of a node's and its par-
ents' classes for non-leaf nodes, as well as the marginal posterior

distribution of a node's class for leaf nodes. The reason can be ex-
plained through the expression of the posterior expectation of log
likelihood in Equation 4.

LL¹� º = EYjX;� 0 logP¹X;Yj� º

= EYjX;� 0 log

(
NÖ

n=1

P¹xn jyn ; � º
NÖ

n=1

P¹yn jyk 2Pn ; � º

)

=
Õ

Y

P¹YjX; � 0º
NÕ

n=1

�
logP¹xn jyn ; � º + logP¹yn jyk 2Pn ; � º

	

=
NÕ

n=1

logP¹xn jyn ; � ºP¹yn jX; � 0º

+
NÕ

n=1

Õ

yn ;yk 2Pn

logP¹yn jyk 2Pn ; � ºP¹yn ;yk 2Pn jX; � 0º

(4)

Note that for leaf node,Pn = ; , and the last term in the last line of
above equation is degraded,logP¹yn jyk 2Pn ; � ºP¹yn ;yk 2Pn jX; � 0º =
logP¹yn j� ºP¹yn jX; � 0º.

To compute the marginal posterior distributionP¹yn ;yk 2Pn º
and P¹yn º (we omit the condition onX and � 0 for brevity), we
propose to use the message propagation method based on the sum
and product algorithm [12, 19]. Message propagation along graph
(or tree) nodes is a process of marginalizing out those corresponding
node variables in a joint distribution.

Figure 3 illustrates the recursive message propagation process on
our HMT model. Speci�cally, forward message propagation from
leaves to root is based on Equation 5 and Equation 6, wheref i

n ¹yn º
and f o

n ¹yn º are the incoming message into and outgoing message
from a hidden class nodeyn respectively.

f i
n ¹yn º =

8>><

>>
:

P¹yn º if yn is leaf
Í

yk 2Pn

P¹yn jyk 2Pn º
Î

k 2Pn

f o
k ¹yk º otherwise (5)

f o
n ¹yn º = f i

n ¹yn ºP¹xn jyn º (6)

Backward message propagation from root to leaves also follows a
recursive process, as shown in Equation 7 and Equation 8, where
gi

n ¹yn º andgo
n ¹yn º are the incoming and outgoing messages for

class nodeyn respectively. The main di�erence from forward prop-
agation is that when computing incoming messagegi

n ¹yn º, we need
to multiply not only outgoing message from a child node and class
transitional probability, but also outgoing messages from sibling
nodes in the forward propagation (also illustrated in Figure 3(b)).

gi
n ¹yn º =

8>><

>>
:

1 if yn is root
Í

ycn ;yk 2Sn

go
cn

P¹ycn jyn ;yk 2Sn º
Î

k 2Sn

f o
k ¹yk º otherwise

(7)
go

n ¹yn º = gi
n ¹yn ºP¹xn jyn º (8)

After both forward and backward message propagation, we can
compute marginal posterior distribution of hidden class variables
based on the following theorem.

Theorem 3.1.The unnormalized marginal posterior distribution
of the class of a leaf node, as well as the classes of a non-leaf node with
parents can be computed by (9) and (10) respectively. Their normalized
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marginal posterior distributions can be computed by (11) and (12)
respectively.

P0¹yn jX; � 0º = f i
n ¹yn ºgi

n ¹yn ºP¹xn jyn º (9)

P0¹yn ;yk 2Pn jX; � 0º =
Ö

k 2Pn

f o
k ¹yk ºgo

n ¹yn ºP¹yn jyk 2Pn º (10)

P¹yn jX; � 0º  
P0¹yn jX; � 0º

Í

yn

P0¹yn jX; � 0º
(11)

P¹yn ;yk 2Pn jX; � 0º  
P0¹yn ;yk 2Pn jX; � 0º

Í

yn ;yk 2Pn

P0¹yn ;yk 2Pn jX; � 0º
(12)

Proof. Detailed proof can be found in [24]. The main intuition
is that the messages on node variables can be proved to have statis-
tical meanings (corresponding to certain probability functions) by
induction. Based on this, the marginal posterior distributions can
be easily proved. �

After computation of marginal posterior distribution, we can
update model parameters by maximizing the posterior expectation
of log likelihood (the maximization or M step in EM). Taking the
marginal posterior distributions in (11) and (12) above as well as
parameters for probabilities in (2) and (3) into the posterior ex-
pectation of log likelihood in (4), we can easily get the following
parameter update formulas.

� =

Í

n jPn , ;

Í

yn

Í

yPn

yPn ynP¹yn ;yPn jX; � 0º

Í

n jPn , ;

Í

yn

Í

yPn

yPn P¹yn ;yPn jX; � 0º
(13)

� =

Í

n jPn = ;

Í

yn

ynP¹yn jX; � 0º

Í

n jPn = ;

Í

yn

P¹yn jX; � 0º
(14)

� c =

Í

n
xnP¹yn = cjX; � 0º

Í

n
P¹yn = cjX; � 0º

;c = 0;1 (15)

� c =

Í

n
¹xn � � cº¹xn � � cºT P¹yn = cjX; � 0º

Í

n
P¹yn = cjX; � 0º

;c = 0;1 (16)

Algorithm 2 shows the parameter learning process. First, we
initialize parameters either with random values within reasonable
range or with initial estimates based on training samples (e.g., the
mean and covariance of features in each class). After parameters
are initialized, the algorithm starts the iteration till parameters
converge. In each iteration, it propagates messages �rst from leaves
to root (steps 4-5) and then from root to leaves (steps 6-7). Marginal
posterior distribution of node classes are then computed (steps 8-9).
Based on this, the algorithm updates parameters (step 10).

Time complexity: The cost of Algorithm 2 mainly comes from the
iterations. In each iteration, message propagation is done through
tree traversal, which costsO¹Nº (N is the total number of samples
or tree nodes). It can also be seen easily that marginal probability
computation and parameter update both have costs ofO¹Nº. Thus,
the total cost isO¹N � I º, whereI is the number of iterations.

Algorithm 2 EM Algorithm for Hidden Markov Tree

Input:
� X = »x1; :::;xN ¼T : cell sample feature matrix
� T : a reverse tree for spatial dependency
� � : parameter convergence threshold

Output:
� � = f � ; � ; � c; � c jc = 0;1g: set of model parameters

1: Initialize � 0, �
2: while k� 0 � � k1 > � do
3: � 0  �
4: for each yn from leaf to rootdo
5: Compute messagesf i

n ¹yn º; f o
n ¹yn º by (5)-(6)

6: for each yn from root to leafdo
7: Compute messagesgi

n ¹yn º;go
n ¹yn º by (7)-(8)

8: for each yn ; 1 � n � N do
9: // Compute marginal distributions:

P¹yn jX; � 0º;P¹yn ;yk 2Pn jX; � 0º by (9)-(12)
10: Update� based on marginal distributions:

�  arg max
�

EYjX;� 0 logP¹X;Yj� º by (13)-(16)

11: return �

Is the model unsupervised or semi-supervised? From dis-
cussions above, it is possible to learn HMT parameters in an unsu-
pervised manner without training class labels. However, this relies
on strong assumptions on data distributions. Particularly, it requires
samples in di�erent classes to be somehow distinguishable merely
based on their feature distribution (P¹xn jyn º), since class transi-
tional probability in dependency tree only enforces a partial order
constraint between class nodes. This assumption can be violated in
many real world applications where di�erent classes cannot be eas-
ily distinguished via unsupervised feature clustering. In such cases,
we can utilize training samples with class labels to initialize param-
eters ofP¹xn jyn º, i.e.,f � c; � c jc = 0;1g, by maximum likelihood
estimation. In this way, initialized probabilityP¹xn jyn º is a descent
initial guess. In this case, the model learning is semi-supervised [26].

3.4 Class Inference
After learning model parameters, we can infer hidden class vari-

ables by maximizing the overall probability. In a traditional hidden
Markov model, inference on hidden variables are done through
Viterbi algorithm [18] based on dynamic programming. However,
its computational cost is still very high for a large number of nodes
(e.g., hundreds of millions). To address this challenge, we propose a
greedy algorithm that guarantees correctness based on the partial
order class constraint. Taking the logarithm of joint probability in
Equation 1, we get the objective function in Equation 17 below.

logP¹X;Yº =
NÕ

n=1

logP¹xn jyn º +
NÕ

n=1

logP¹yn jyk 2Pn º (17)

The goal of class inference is to assign a class label to each tree
node such that the overall sum of log probability terms in Equa-
tion 17 is maximized. Each term in the summation can be considered
as a reward. For instance,logP¹xn jyn º is the reward for assigning
classyn to noden (i.e., node reward),logP¹yn jyk 2Pn º is the re-
ward for assigning classyn andyk 2Pn to noden and its parents
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respectively (i.e., edge reward). Thus, class inference in HMT be-
comes anode coloring problem. Our goal is to �nd a node coloring
to maximize the overall sum of rewards. In addition, the color must
follow a partial order constraint, e.g.,dry (class 0) nodes cannot
follow �ood (class 1) nodes, because otherwise,P¹yn jyk 2Pn º = 0.
Therefore, we can enumerate all feasible node coloring through

Figure 4: Illustration of class inference process

one bottom-up tree traversal, as described in Algorithm 3. We can
initialize all node color as class0 (negative class, e.g.,dry), and
gradually changed node colors from class0 to class1 from leaves to
the root. When we change the color of a node, only the reward of
the node itself, as well as the rewards of edges between the nodes to
its parents and child will be updated, as illustrated in Figure 4. Thus,
we can easily compute the gain of rewards when updating node
colors (� LL), and maintain the current cumulative gain (gcur ¹nº)
as well as the maximum cumulative gain (gmax ) that we've come
across so far. When we reach the root node, the maximum overall
gain of rewards has been recorded. We can traverse the tree again
to �nd its corresponding node coloring.

Algorithm 3 Class Inference for Hidden Markov Tree

Input:
� T : reverse tree for spatial dependency
� � = f � ; � ; � ; � c; � c jc = 0;1g: set of model parameters

Output:
� Y = »y1; :::;yn¼: inferred classes for all hidden nodes

1: Initializeyn  0 for 1 � n � N
2: Initialize gcur ¹nº  0 for 1 � n � N
3: Initialize gmax ¹nº  0 for 1 � n � N
4: for each noden in topological order from leaf to rootdo
5: yn  1

6: � LL  log
�
P¹xn jyn ºP¹ycn jyn ;yk 2Sn ºP¹yn jyk 2Pn º

�
�
�
�
�

yn =1

yn =0
// yk 2Pn = ; for leaf noden

7: gcur ¹nº  
Í

k 2Pn

gcur ¹kº + � LL

8: gmax ¹nº  
Í

k 2Pn

gmax ¹kº

9: if gmax ¹nº < gcur ¹nº then
10: gmax ¹nº  gcur ¹nº
11: Do breadth �rst tree traversal to �nd the frontier of maximum

gmax
12: Setyn  0 for nodes above the frontier
13: return Y = »y1; :::;yn¼, the class labels of all nodes

Time complexity analysis: The initialization steps costO¹Nº,
where N is the number of samples (tree nodes). Each iteration

of the for loop has a constant cost, making the total costO¹Nº.
Similarly, the breadth �rst traversal and re-coloring in last step cost
O¹Nº. Thus, the entire algorithm has a cost ofO¹Nº.

4 EXPERIMENTAL EVALUATION
In this section, we compared our proposed method with baseline

methods on both synthetic dataset and two real world datasets in
classi�cation performance. We also evaluated the computational
scalability of our method on synthetic data with di�erent sizes.
Experiments were conducted on a Dell workstation with Intel(R)
Xeon(R) CPU E5-2687w v4 @ 3.00GHz, 64GB main memory, and
Windows 10. Candidate classi�cation methods include:

� Non-spatial classi�ers with raw features : We tested de-
cision tree (DT), random forest (RF), maximum likelihood
classi�er (MLC), and gradient boosted tree (GBM) in R pack-
ages onraw features (red, green, blue spectral bands).

� Non-spatial classi�ers with elevation features : We tested
DT, RF andMLC with additional elevation feature (elev.)
We do not includeGBM due to space limit.

� Non-spatial classi�er with post-processing label prop-
agation (LP): We also testedDT, RF andMLC on raw fea-
tures but with post-processing on predicted classes via label
propagation [27]. We used 4-neighborhood. We do not in-
cludeGBM due to space limit.

� Transductive SVM: Since our method utilizes features of
test samples, we included Transductive SVM (SVM-Light [10]),
a semi-supervised tranductive method for fair comparison.

� Markov random �eld (MRF): We used open source imple-
mentation [22] based on the graph cut method [20].

� Hidden Markov Tree (HMT): We implemented HMT in
C++.

Unless speci�ed otherwise, we used default parameters in open
source tools for baseline methods.

4.1 Synthetic Data
We �rst evaluated our proposed approach on synthetic data.

Speci�cally, we generated a regular grid with1000by 1000pixels. El-
evations and classes (�ood, dry) of pixels are shown in Figure 5(a-b).
Feature values of pixels in two classes follow two one-dimensional
Gaussian distributions with means� 1 = 110; � 2 = 150and standard
deviations� 1 = � 2 = 20(these numbers are arbitrary). To re�ect
the spatial autocorrelation e�ect, we generated one common fea-
ture value for a group of contiguous pixels in a coarse resolution
(50� 50) (see Figure 5(c)). Training samples from two classes were
generated based on the two Gaussian distributions of feature values.

Computational scalability: We measured the computational
time costs of di�erent components in our HMT algorithms on
varying sizes of study area (from around2 million pixels to around
20million pixels). We also �xed the number of iterations as3 when
running algorithms on di�erent data sizes. The time costs were
measured in the average of10runs. Figure 6 shows the time costs of
tree construction (Algorithm 1), parameter learning (Algorithm 2),
and class inference (Algorithm 3) respectively. We can see that as
the number of pixels increases, time costs of all algorithms are
increasing. The parameter learning part takes the vast majority of
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(a) Elevation map (b) Class map (red for
�ood, blue for dry)

(c) Feature map

Figure 5: Illustration of synthetic data (best viewed in color)

time costs. Its time costs increase linearly with data sizes, because
the message propagation in each iteration is done through tree
traversal operations, which has a linear time complexity. Overall,
our algorithms cost less than 5 minutes on a synthetic data with 20
million samples.

Figure 6: Computational time costs of HMT on di�erent data
sizes

Classi�cation performance: We compared the F-score of dif-
ferent methods on test pixels with di�erent parameter settings of
synthetic data generation. We exclude pre-processing and post-
processing methods because our synthetic data generation cannot
simulate the real feature textures. In the �rst setting, we conducted
comparison on varying numbers of training pixels from10, 1000, to
10000. Results in Figure 7(a) showed that the classi�cation perfor-
mance of di�erent methods were relatively stable (easily reaching
plateau) for di�erent training set sizes. The reason was probably
that one dimensional Gaussian distributions on feature values in
two classes were very easy to learn. In the second setting, we �xed
other parameters and varied the standard deviations� 1; � 2 of fea-
ture values in two classes. The higher the values were, the more
confusion (Bayes error) there were between two classes. Results of
di�erent methods in Figure 7(b) showed that as� 1; � 2 increase, the
classi�cation performance of all methods degraded, but our HMT
model persistently outperformed other baseline methods, due to
incorporating anisotropic spatial dependency across locations.

(a)

(b)

Figure 7: Classi�cation performance comparison across
methods on synthetic data

4.2 Hurricane Matthew Floods 2016
Here we validated our approach in �ood inundation extent map-

ping during Hurricane Mathew, NC, 2016. We used high-resolution
aerial imagery from NOAA National Geodetic Survey [14] as ex-
planatory features (three spectral band features including red, green,
blue), and digital elevation map from the University of North Car-
olina Libraries [16]. All imagery data were re-sampled into a res-
olution of 2 meters. A test region with 1743 by 1349 pixels was
used. A training set with 10000 pixels (5000dry and 5000�ood)
were manually labeled outside the test region, and 94608 test pixels
(47092dry, 47516�ood) were labeled within the test region.

Classi�cation performance comparison: We compared meth-
ods on precision, recall, and F-score. Results were summarized
in Table 1. We can see that decision tree, random forest, gradi-
ent boosted tree, and maximum likelihood classi�er all performed
poorly on raw features, with overall F-score around 0.7. Adding
post-processing through label propagation slightly impaired perfor-
mance. For instance, adding label propagation (LP) to decision tree
results improved the recall of thedry class but degraded the recall
of the �ood class. Markov random �eld and Transductive SVM had
comparable results with decision tree. Adding elevation features
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